A model-based time-reversal of left ventricular motion improves cardiac motion analysis using tagged MRI data
نویسندگان
چکیده
BACKGROUND Myocardial motion is an important observable for the assessment of heart condition. Accurate estimates of ventricular (LV) wall motion are required for quantifying myocardial deformation and assessing local tissue function and viability. Harmonic Phase (HARP) analysis was developed for measuring regional LV motion using tagged magnetic resonance imaging (tMRI) data. With current computer-aided postprocessing tools including HARP analysis, large motions experienced by myocardial tissue are, however, often intractable to measure. This paper addresses this issue and provides a solution to make such measurements possible. METHODS To improve the estimation performance of large cardiac motions while analyzing tMRI data sets, we propose a two-step solution. The first step involves constructing a model to describe average systolic motion of the LV wall within a subject group. The second step involves time-reversal of the model applied as a spatial coordinate transformation to digitally relax the contracted LV wall in the experimental data of a single subject to the beginning of systole. Cardiac tMRI scans were performed on four healthy rats and used for developing the forward LV model. Algorithms were implemented for preprocessing the tMRI data, optimizing the model parameters and performing the HARP analysis. Slices from the midventricular level were then analyzed for all systolic phases. RESULTS The time-reversal operation derived from the LV model accounted for the bulk portion of the myocardial motion, which was the average motion experienced within the overall subject population. In analyzing the individual tMRI data sets, removing this average with the time-reversal operation left small magnitude residual motion unique to the case. This remaining residual portion of the motion was estimated robustly using the HARP analysis. CONCLUSION Utilizing a combination of the forward LV model and its time reversal improves the performance of motion estimation in evaluating the cardiac function.
منابع مشابه
Deformable models with parameter functions for cardiac motion analysis from tagged MRI data
The authors present a new method for analyzing the motion of the heart's left ventricle (LV) from tagged magnetic resonance imaging (MRI) data. Their technique is based on the development of a new class of physics-based deformable models whose parameters are functions. They allow the definition of new parameterized primitives and parameterized deformations which can capture the local shape vari...
متن کاملAl . : Deformable Models with Parameter Functions for Cardiac Motion
| We present a new method for analyzing the motion of the heart's left ventricle (LV) from tagged magnetic resonance imaging (MRI) data. Our technique is based on the development of a new class of physics-based deformable models whose parameters are functions. They allow the definition of new parameterized primitives and parameterized deformations which can capture the local shape variation of ...
متن کاملAnalysis of myocardial motion using generalized spline models and tagged magnetic resonance images
Heart wall motion abnormalities are the very sensitive indicators of common heart diseases, such as myocardial infarction and ischemia. Regional strain analysis is especially important in diagnosing local abnormalities and mechanical changes in the myocardium. In this work, we present a complete method for the analysis of cardiac motion and the evaluation of regional strain in the left ventricu...
متن کاملNonrigid Image Registration with Subdivision Lattices: Application to Cardiac MR Image Analysis
In this paper we present a new methodology for cardiac motion tracking in tagged MRI using nonrigid image registration based on subdivision surfaces and subdivision lattices. We use two sets of registrations to do the motion tracking. First, a set of surface registrations is used to create and initially align the subdivision model of the left ventricle with short-axis and long-axis MR images. S...
متن کاملA novel optical flow method for myocardial deformation analysis from tagged MRI
Background Cardiac motion analysis can play an important role in diagnosis of cardiac disease. Tagged magnetic resonance imaging (MRI) has the ability to directly and non-invasively alter tissue magnetization and produce tag patterns on the deforming tissue [1-3]. This abstract proposes a novel optical flow method for computing the left ventricular systolic dynamics using harmonic phase (HARP) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 7 شماره
صفحات -
تاریخ انتشار 2008